

RESEARCH MEMORANDUM

FORCE AND PRESSURE -DISTRIBUTION MEASUREMENTS AT A MACH
NUMBER OF 3.12 OF SLENDER BODIES HAVING CIRCULAR,
ELLIPTICAL, AND TRIANGULAR CROSS SECTIONS
AND THE SAME LONGITUDINAL DISTRIBUTION
OF CROSS-SECTIONAL AREA

By Roy H. Lange and Charles E. Wittliff

Langley Aeronautical Laboratory
Langley Field, Va.

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning of the esplorage laws, Title 18, U.S.C., Secs. 753 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

July 13, 1956

NACA RM L56D17

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

FORCE AND PRESSURE-DISTRIBUTION MEASUREMENTS AT A MACH

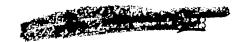
NUMBER OF 3.12 OF SLENDER BODIES HAVING CIRCULAR,

ELLIPTICAL, AND TRIANGULAR CROSS SECTIONS

AND THE SAME LONGITUDINAL DISTRIBUTION

OF CROSS-SECTIONAL AREA

By Roy H. Lange and Charles E. Wittliff


SUMMARY

An investigation has been conducted at a Mach number of 3.12 and at a Reynolds number of 29×10^6 (based on body length) to determine the aerodynamic characteristics of bodies with elliptical and triangular cross sections and to compare these data with those of a related body having circular cross sections. The body having circular cross sections is the NACA RM-10 and the bodies with noncircular cross sections have the same longitudinal distribution of cross-sectional area as the NACA RM-10. Force tests to determine lift, drag, and pitching-moment characteristics as well as pressure-distribution measurements were made for an angle-of-attack range of 18° .

INTRODUCTION

The theoretical work of Ferri, Ness, and Kaplita indicates that some reductions in drag at zero angle of attack can be obtained at supersonic speeds by the use of bodies having cross sections different from circular (ref. 1). At the present time, however, there are few systematic data available at supersonic speeds on the characteristics of related bodies with noncircular cross sections. (See refs. 2 to 4.) Therefore, the present investigation was undertaken on bodies with elliptical and triangular cross sections in order to compare the characteristics of these bodies with those of a body having circular cross sections. The body having the circular cross sections is the NACA RM-10 (without fins); the noncircular bodies have the same longitudinal distribution of cross-sectional area as that of the NACA RM-10.

The investigation was conducted in a blowdown jet located at the Langley gas dynamics laboratory at a Mach number of 3.12 and a Reynolds number of 29×10^6 ; hence, the data for the NACA RM-10 are extended to a higher Mach number than those obtained in references 5 to 7 while maintaining the same value of Reynolds number. Both force tests and pressure-distribution measurements were made on the bodies for a nominal angle-of-attack range of $\pm 8^\circ$. The lift, drag, pitching-moment, and pressure-distribution characteristics of the bodies are presented herein with a minimum of analysis in order to expedite release of this information.

SYMBOLS

Free-stream conditions:

ρ .	mass density of air
V	airspeed
a	speed of sound in air
М	Mach number, V/a
P	dynamic pressure, $\frac{1}{2} \rho V^2$
p	static pressure
μ	viscosity of air
R	Reynolds number, $\frac{\rho VL}{\mu}$

Body geometry:

S	cross-sectional area
L	length of body
x	distance from nose of body measured along axis of symmetry
У	lateral coordinate, perpendicular to plane of symmetry
b	width of body
r	radius of NACA RM-10 body

ALL MODE TO MY TAKE

cross-sectional dimensions of triangular body (see fig. 2) f,g,h,w d. semiminor axis of elliptical body a semimajor axis of elliptical body K geometric parameter cross-sectional-area parameter of triangular body, C angle of attack of body center line, deg α θ radial angle measured counterclockwise in plane perpendicular to axis of body when facing upstream ($\theta = 0^{\circ}$ on bottom of body in plane of angle of attack)

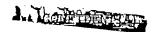
Force data:

CL lift coefficient, Lift qSmax

CN normal-force coefficient, Normal force qS_{max}

 C_{m} pitching-moment coefficient about nose of body, $\frac{\text{Pitching moment}}{qS_{\text{max}}L}$

 c_D forebody drag coefficient, $\frac{Drag}{qS_{max}}$


CL lift-drag ratio

 $c_{L_{\alpha}}$ rate of change of lift coefficient with angle of attack, per degree

Pressure data:

p local static pressure

P pressure coefficient, $\frac{p_l - p}{q}$

c _n	section normal-force coefficient, $\int_0^1 P_r d\left(\frac{2y}{b}\right)$
P_{r}	resultant pressure coefficient, Plower - Pupper
$c_{ m N}$	normal-force coefficient, $\frac{2L}{\sqrt{\pi S_{max}}} \int_0^L c_n K d\left(\frac{x}{L}\right)$ where K is
	as follows:

Body	К
NACA RM-10	r/r_{max}
Triangular	w/C
Elliptical (major axis vertical)	$d / \sqrt{a_{max} d_{max}}$
Elliptical (major axis horizontal)	$a/\sqrt{a_{\max} d_{\max}}$

Subscripts:

max

maximum

N

nominal or uncorrected

MODELS

The geometric characteristics of the three bodies tested are given in figures 1 and 2 and photographs of the bodies used in the pressure-distribution tests are given as figure 3. The body with the circular cross section is the NACA RM-10 with coordinates given by the equation in figure 1(a). The bodies with the elliptical and triangular cross sections have the same longitudinal distribution of cross-sectional area as that of the NACA RM-10. For the body with the elliptical cross section, the major axis is twice the minor axis.

Two sets of steel models were used - one set for the pressure-distribution tests and one set for the force tests. The body with triangular cross sections used in the force tests was made 15 percent larger than the dimensions given in figures 1 and 2 in order to accommodate the

sting-supported internally mounted electrical strain-gage balance used in the force tests. For the pressure-distribution tests the bodies had 0.020-inch-diameter flush-surface static-pressure orifices arranged in sectionwise rows located 2, 4, 6, 8, 10, 12, and 14 inches from the body nose. The radial locations of the orifices, which are the same for all longitudinal stations, are indicated on the cross-sectional views of figure 2.

All models were sting supported. As shown in figure 3, the portion of the body rearward of the base (14.65-inch station) for each body used in the pressure-distribution tests was faired into a sting 1.5 inches long of constant area and with a cross-sectional shape the same as that of the body itself. For the body with the elliptical cross sections used in the pressure-distribution tests, a thin plate with wedge-shaped leading edges was required for strength at the model base. This plate eliminated the orifices at the 14-inch longitudinal station. No such plate was required for the body used in the force tests. The sting dimensions for the bodies are as follows:

Body	Characteristic dimension, in.
NACA RM-10 (pressure)	Diameter, 0.727
Triangular (pressure)	Total width, 0.748 Total height, 0.780
Elliptical (pressure)	Major axis, 1.005
NACA RM-10 (force)	Diameter, 0.576
Triangular (force)	Total width, 0.645 Total height, 0.685
Elliptical (force)	Major axis, 0.875

For the force models, four static-pressure orifices spaced 90° apart are provided on each sting at the 14.65-inch station for the measurement of the base pressure.

APPARATUS AND TESTS

The tests were conducted in a blowdown jet at the Langley gas dynamics laboratory having a two-dimensional nozzle with a rectangular test section approximately 9.5 inches high and 9 inches wide. The nozzle was designed by the method of characteristics with a correction made for boundary layer and operates at an average Mach number of 3.12. All the tests were made at a settling-chamber pressure of 150 pounds per square inch gage and at a stagnation dewpoint which eliminated any effect of condensation. The Reynolds number of the tests was approximately 23.7×10^6 per foot.

All tests were made through an angle-of-attack range from about -8° to 8° in increments of 2°. For the force tests, measurements were made at each angle of attack of the normal force, chord force, and pitching moment by means of a sting-supported electrical strain-gage balance internally mounted in the bodies. For the pressure-distribution tests, the surface static pressures were measured by means of a multiple-tube manometer and photographically recorded. The angles of attack were determined from schlieren photographs taken of the model for each test point. The angles of attack determined in this manner are accurate to within 0.10°.

For the pressure-distribution tests, the body with elliptical cross sections was tested through the angle-of-attack range both with the major axis vertical and with the major axis horizontal. For the force tests of the body with elliptical cross sections, the height of the three-component strain-gage balance was such that it could only be internally mounted in the body when alined with the major axis; hence, force tests could only be made of the body with the major axis vertical.

The base pressures measured were used to calculate the chord force acting at the base of the bodies, and the chord forces measured by the strain-gage balance were corrected to the condition of free-stream static pressure acting at the base of the bodies.

PRESENTATION OF RESULTS

The results of the investigation are given in figures 4 to 16 and in tables I to IV. The force measurements of each body are given as plots of C_L , C_m , C_D , and C_L/C_D against angle of attack in figures 4 to 6. A summary plot of C_D , C_L/C_D , and α against C_L is given in figure 7 for four body configurations for comparison purposes.

The data obtained from the pressure-distribution tests are presented in tables I, II, III, and IV for the NACA RM-10, the body with triangular cross sections, the body with elliptical cross sections and major axis

vertical, and the body with elliptical cross sections and major axis horizontal, respectively. Nominal angles of attack α_N are used in the plots of the pressure-distribution data for convenience since the corrected angles of attack at each attitude are different for each body. These corrected angles of attack are given in tables I to IV.

The variation of pressure coefficient P with longitudinal position along the body x/L for the bodies with circular and elliptical cross sections is given in figure 8 for $\alpha_N=0^\circ$ and $\theta=0^\circ$ and 180° , and the effects of angle of attack are shown in figures 9 to 11. The pressure coefficients calculated by slender-body theory (see refs. 5 and 8) are superimposed on the experimental data of figure 8 at $\alpha_N=0^\circ$; whereas, in figures 9 to 11, the calculated pressure coefficients for only the NACA RM-10 body are shown for comparison with the experimental data of the four bodies at angles of attack.

The variation of pressure coefficient with body width for four selected longitudinal stations and for angles of attack from 0° to 8° are given in figure 12. These plots, together with those for longitudinal stations not presented, were integrated to obtain the local normal-force coefficients for the bodies. The variation of pressure coefficient with radial angle for four selected longitudinal stations and for angles of attack from 0° to 6° are presented in figure 13 for the NACA RM-10 body and are compared with the predictions of slender-body theory. Similar data for the body with elliptical cross sections at 0° angle of attack are given in figure 14.

The longitudinal distribution of section loading parameter $c_n K$ is presented in figure 15 for the four body configurations at angles of attack of 2°, 4°, 6°, and 8°. Integration of the curves of figure 15 yields the total normal-force coefficient as obtained from the pressure-distribution tests; however, sufficient data were available only for the NACA RM-10 and for the body with triangular cross sections, and these values of c_N are compared in figure 16 with those obtained on the bodies from force tests.

DISCUSSION OF RESULTS

Although no detailed discussion of the results of the investigation will be attempted in this paper, the results of most interest will be briefly pointed out in the paragraphs that follow.

The results of the force tests of the bodies are summarized in the following table:

Body	$C_{L_{\alpha}}$ $(\alpha = 0^{\circ})$	$\begin{pmatrix} c_{\rm L} = 0 \end{pmatrix}$	$\begin{pmatrix} c_{L} / c_{D} \\ c_{L} = 0.2 \end{pmatrix}$	$\begin{pmatrix} C_{L} / C_{D} \\ C_{L} = 0.4 \end{pmatrix}$
NACA RM-10 Triangular (upright) Triangular (inverted) Elliptical (vertical)	0.0323 .0460 .0460 .0217	0.086 .118 .118 .094	1.88 1.38 1.59 1.43	2.83 2.16 2.63

It is interesting to note that the body with circular cross sections (NACA RM-10) has the lowest drag. Slender-body theory (ref. 8) predicts lower wave drag for the body with elliptical cross sections than for the equivalent body of revolution, although the difference is small for the bodies considered here. For the test conditions reported herein, it is estimated that the skin-friction drag is about 70 percent of the total drag and if the skin-friction drag is subtracted from the total drag, then the remainder of the drag can be considered as indicative of the wave-drag level for each body. These remainders agree within 4 percent for the elliptical- and circular-cross-section bodies; therefore, it is felt that the tests agree with the slender-body theory to the extent that the differences in wave drag between the elliptical- and circular-cross-section bodies are small.

Above a lift coefficient of 0.15, the inverted body with triangular cross sections had the highest values of lift-drag ratio of the noncircular bodies tested, and, at $C_{7} = 0.4$, this value was only 7 percent lower than that of the NACA RM-10 body. (See fig. 7.) These larger values of liftdrag ratio of the inverted body with triangular cross sections are a result of the relatively low drag rise with increase in lift, even when comparison is made with the NACA RM-10 data. It should be noted that had force tests been made on the elliptical body (horizontal) it probably would have attained the highest $C_{\rm L}/C_{\rm D}$ values because of an improved lift-curve slope. This improved lift-curve slope is indicated for the elliptical body (horizontal) in the section-loading curves of figure 15. The use of cross-flow theory (ref. 9) improves the correlation between the calculated and experimental aerodynamic characteristics of the NACA RM-10 over that obtained with slender-body theory, as expected; however, the agreement is poor throughout. (See fig. 4.) The minimum drag coefficients of the NACA RM-10 and of the body with elliptical cross sections are overestimated by 15 percent and 12 percent, respectively, by the slender-body (potential) theory and this is due mainly to the assumption of a turbulent boundary layer over the entire length of the body in calculating the skinfriction drag.

There are significant differences in the sectionwise distribution of static pressures among the different cross-section shapes investigated

near the nose of the bodies (see fig. 12); however, at a given attitude, these differences become less pronounced with increase in distance along the body from the nose. In general, the body with elliptical cross sections and with the major axis horizontal has a pressure distribution which is rectangular in shape, the NACA RM-10 has an elliptical distribution, the body with triangular cross sections has a triangular distribution at the outer edges, and the body with elliptical cross sections and major axis vertical has a triangular distribution. The effect of increasing angle of attack is to amplify these differences in pressure distributions for longitudinal stations ahead of the maximum thickness of the body (fig. 12).

The agreement between the pressures predicted by slender-body (potential) theory and those obtained from the experiments is good near the nose at zero angle of attack for the NACA RM-10 and for the body with elliptical cross sections; however, the agreement is poor for stations near and rearward of the maximum thickness. (See figs. 8, 13(a), and 14.)

A comparison of the normal-force coefficients obtained from force measurements with those obtained from pressure-distribution measurements shows good agreement for the NACA RM-10 but only fair agreement for the body with triangular cross sections. This fair agreement of the data for the body with triangular cross sections results from the uncertainty in the fairing of the sectionwise pressure distributions especially at the outer edges of the body.

Iangley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Iangley Field, Va., April 3, 1956.

REFERENCES

- 1. Ferri, Antonio, Ness, Nathan, and Kaplita, Thaddeus T.: Supersonic Flow Over Conical Bodies Without Axial Symmetry. Jour. Aero. Sci., vol. 20, no. 8, Aug. 1953, pp. 563-571.
- 2. Carlson, Harry W., and Gapcynski, John P.: An Experimental Investigation at a Mach Number of 2.01 of the Effects of Body Cross-Section Shape on the Aerodynamic Characteristics of Bodies and Wing-Body Combinations. NACA RM L55E23, 1955.
- 3. Ridyard, Herbert W.: The Aerodynamic Characteristics of Two Series of Lifting Bodies at Mach Number 6.86. NACA RM L54C15, 1954.
- 4. Stoney, William E., Jr., and Putland, Leonard W.: Some Effects of Body Cross-Sectional Shape, Including a Sunken-Canopy Design, on Drag as Shown by Rocket-Powered Model Tests at Mach Numbers From 0.8 to 1.5. NACA RM L52D07, 1952.
- 5. Luidens, Roger W., and Simon, Paul C.: Aerodynamic Characteristics of NACA RM-10 Missile in 8- by 6-Foot Supersonic Wind Tunnel at Mach Numbers From 1.49 to 1.98. I Presentation and Analysis of Pressure Measurements (Stabilizing Fins Removed). NACA RM E50Dl0, 1950.
- 6. Esenwein, Fred T., Obery, Leonard J., and Schueller, Carl F.:
 Aerodynamic Characteristics of NACA RM-10 Missile in 8- by 6-Foot
 Supersonic Wind Tunnel at Mach Numbers From 1.49 to 1.98. II Presentation and Analysis of Force Measurements. NACA RM E50D28,
 1950.
- 7. Luidens, Roger W., and Simon, Paul C.: Aerodynamic Characteristics of NACA RM-10 Missile in 8- by 6-Foot Supersonic Wind Tunnel at Mach Numbers From 1.49 to 1.98. III Analysis of Force Distribution at Angle of Attack (Stabilizing Fins Removed). NACA RM E50I19, 1950.
- 8. Kahane, A., and Solarski, A.: Supersonic Flow About Slender Bodies of Elliptic Cross Section. Jour. Aero. Sci., vol. 20, no. 8, Aug. 1953, pp. 513-524.
- 9. Allen, H. Julian: Estimation of the Forces and Moments Acting on Inclined Bodies of Revolution of High Fineness Ratio. NACA RM A9I26, 1949.

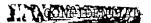
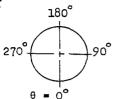



TABLE I. PRESSURE COEFFICIENT DATA FOR RM-10 BODY

(a) Positive angles of attack

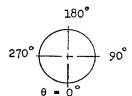

	C+ -+	·		Po 33	ial angle,	0 2		
deg	Station, x/L	90	120	150	180	210	240	270
uek	~	70	ILO		100	210	2110	
0.1	0.137 .273 .h10 .5146 .683 .819 .956	0.036l ₄ .0009 .0062 .020l ₄ .0229 .0223	0.0405 .0161 .0028 0088 0141 0246 0223	0.0373 .0182 .0047 0088 0156 0246 0221	0.0343 .0191 .0054 0109 0152 0191 0219	0.0360 .0152 .00514 0107 0195 0201	0.036l4 .0178 .0041 0152 0167 0248 0227	0.0317 .0186 008l4 0195 0219 0206
2•3	•137 •273 •110 •516 •683 •819 •956	.0347 000l4 012l4 000l4 030l4 02l40	.0313 .0096 0051 0137 0184 0257 0193	.0227 .0107 006l ₄ 0081 0193 0227 0171	.0197 .0107 0051 0107 0176 0210 0163	.0214 .0077 0051 0090 0231 0167	.0270 .0111 0039 0206 0197 0270 0201	.0300 .0163 0150 0184 0287 0219
4∙ 2	•137 •273 •410 •516 •683 •819 •956	.0291 0124 0176 0081 0403 0399	.0214 0017 0150 0184 0270 0291 0279	.0137 0009 0077 0111 0227 0240 0219	.0120 0004 0056 0150 0206 0214 0167	.0124 0039 0081 0099 02140 02114	.0176 0013 0146 0274 0300 0309 0240	.0236 0094 0219 0317 0403 0279
6•2	•137 •273 •410 •546 •683 •819 •956	.01/14 02/16 03/90 03/60 05/91 03/51	.0011 0152 0234 0351 0369 0381 0339	0024 0066 0174 0184 0309 0356 0381	0024 0045 0139 0231 0270 0261 0231	0049 0101 0178 0189 0360 0343	0028 0139 0281 0112 0116 0381 03314	0088 0075 0454 0544 0634 0347
8.3	•137 •273 •410 •546 •683 •819 •956	-047 -01420 -0617 -0561 -0531 -0405	0116 0326 0437 0429 0416 0467 0456	0060 0156 0270 0283 0420 0531 0546	0036 0124 0219 0227 0266 0334 0405	0090 0180 0279 0294 0510 0465	0148 0304 0463 0484 0435 0474 0418	0013 0176 0642 0767 0572 0381

TABLE I -- PRESSURE COEFFICIENT DATA FOR RE-10 BODY

(b) Negative angles of attack

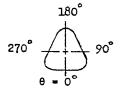
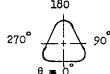

α,	Station,			Radial	angle, θ,	deg		
deg	x/L	270	300	330	0	30	60	90
-0.2	0.137 .273 .410 .546 .683 .819 .956	.0345 .0006 0064 0009 0236 0223	.01401 .0161 .0028 0090 01146 02149 0223	.0371 .0182 .0045 0094 0159 0249 0223	.031.5 .0191 .00514 0111 01514 02140	.0362 .0152 .0054 0004 0210 0206	.0375 .0178 .0032 0163 0167 0236	.0319 .0186 0090 0197 0223 0209
-2.1	.137 .273 .410 .546 .683 .819 .956	.0334 .0030 .0103 0249 0261 0253	.0467 .0201 .0026 0056 0210 0270 0300	.0488 .0309 .0094 0017 0201 0253 0300	.0501 .0339 .0129 0009 0180 0227 0291	.0493 .0274 .0099 0021 0249 0279	.0433 .0219 .0030 0150 0236 0274 0291	.0296 .0150 0137 0249 0244 0291
-4.1	.137 .273 .410 .546 .683 .819 .956	.0249 0120 0242 0319 0437 0309	.0471 .0219 .0039 0120 0255 0384 0437	.0634 .0437 .0208 .0036 0156 0255 0360	.0686 .0508 .0283 .0088 0081 0195 0296	.0626 .0396 .0204 .0019 02714 0360	.0474 .0240 .0039 0216 0294 0399 0414	.0208 .0090
-6. 6	.137 .273 .410 .546 .683 .819 .956	.0169 	.0506 .0219 .0009 0161 0291 01495 0589	.0803 .0579 .0300 .0096 0088 0276 0360	.0869 .0698 .01,21, .0186 .0017 0191 0257	.0780 .0536 .0281 .0075 	.0530 .0201 	.0129 0039 0377 0486 0538 0283

TABLE II. - PRESSURE COEFFICIENT DATA FOR TRIANGULAR BODY

(a) Positive angles of attack



α,	Station			· · · · · · · · · · · · · · · · · · ·		Radial a	ingle, 6	deg			
deg	1 .	0	16.5	30.7	48.4	66.3	86.2	111.4	14.2	162.4	180
0.1	0.137 .273 .546 .683 .819 .956	.0283 .0141 0208 0240 0229	.0302 0161 0204 0212 0227	.0296 .0148 0114 0212 0225	.03l ₃ .0066 0103 0165	.0279 .0191 0054 .0118 0216 0208	.0328 .0161 0077 .0206 0221 0216	.0317 .0159 0090 0135 0234 0219	.0347 .0178 0137 0133 0219 0227	-0223 -0137 -0137 -0223 -0238	.0339 .0231 0090 0150 0212
5•11	.137 .273 .546 .683 .819 .956	.0433 .0249 0212 0272 0313	.0456 0081 0201 0255 0309	.0146 .0240 0081 0236 0291	.0330 .0047 0096 0279	.0169 .0079 0122 .0122 0257	.0219 .0060 0135 .0212 0255 0246	.0216 .0056 0135 0126 0244 0240	.0208 .0081 0114 0159 0210 0227	.0249 .0118 0139 0176 0212 0197	.0159 .0090 0129 0174
4•4	•137 •273 •546 •683 •819 •956	.0673 .0456 0131 0302 0334	.0694 0004 0126 0291 0345	.0686 .0435 0006 0306 0330	.0339 .0079 0159 0381	.0109 .0043 0165 .0135 0317 0315	.0197 .0047 0126 .0225 0287 0306	.0184 .0036 0129 0201 0264 0279	.0195 .0041 0159 0195 0236 0227	.0056 01814 01814 0208 0180	.0133 .0026 0126 0195 0146
6.5	•137 •273 •546 •683 •819 •956	.0904 .0673 0077 0236 0439	.0921 .0124 0088 0244 0458	.0895 .0619 .0103 0283 0469	.0210 .0019 0403 0585	0047 0167 0324 .0126 0463 0461	.0060 0073 0253 .0216 0471 0497	.0064 0043 0214 0289 0398 0497	.0066 0011 0208 0253 0287 0296	0009 0253 0229 0231 0189	.0004 0017 0191 0236 0124
8•3		.1185 .0902 .0077 0131 0384	.1198 .0304 .0056 .0144 .0409	.1148 .08333 	.0129 .0026 0578 0701	0195 0309 0548 0407 0602 0581	0002 0148 0497 0369 0701 0589	.0019 0109 0345 0369 0688 0808	.0034 0090 0291 0246 0276 0450	0071 0236 0216 0229 0195	0002 0079 0186 0216 0133

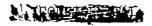
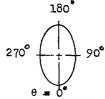
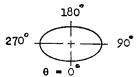


TABLE II.- PRESSURE COEFICIENT DATA FOR TRIANGULAR BODY


(b) Negative angles of attack

α,	Station					Radial ar	ngle, θ,	deg			
deg	x/L	0	16.5	30.7	48.4	66.3	86.2	111.4	14.2	162.4	180
0.1	0.137 .273 .546 .683 .819 .956	.0283 .0141 0208 0240 0229	.0302 0161 0204 0212 0227	.0296 .0148 0114 0212 0225	.0343 .0066 0103	.0279 .0191 0054 .0118 0216	.0328 .0161 0077 .0206 0221 0216	.0317 .0159 0090 0135 0234 0219	.0347 .0178 0137 0133 0219 0227	-0223 -0137 -0137 -0223 -0238	.0339 .0231 0090 0150 -1
-1.9	.137 .273 .546 .683 .819 .956	.0159 .0049 0171 0229 0199	.0171 0189 0169 0231 0199	.0163 .0049 0167 0225 0216	.0261 0021 0174 0249	0302	.0390 .0184 0069 0167 0242 0330	.0398 .0214 0056 0176 0238 0328	.0441 .0257 0090 0165 0234 0315	.0300 0069 0163 0221 0285	.0561 .0390 0 0165 0255
-3.9	•137 •273 •546 •683 •819 •956	.0066 0028 0225 0270 0266	0174 0225 0283 0266	.0060 0049 0174 0317 0291	.0118 0154 0296 0261	.0161 0199	.0422 .0238 0105 0186 0339 0373	.0456 .0287 0064 0152 0296 0369	.0521 .0339 0071 0133 0236 0356	.0405 0024 0131 0193 0317	.0754 .0555 .0109 0114
-5. 8	.137 .273 .546 .683 .819 .956	0032 0103 0296 0351 0446	0028 0244 0281 0369 0450	0051 0163 0317 0437 0433	0090 0366 0394 0315		.0499 .0251 0058 0208 0358 0416	.0568 .0349 0009 0111 0294 0388	.0641 .0435 0013 0062 0244 0347	.0553 .0017 0056 0210 0306	.0975 .0765 .0204 .0009


TABLE III.- PRESSURE COEFFICIENT DATA FOR ELLIPTICAL BODY. MAJOR AXIS VERTICAL

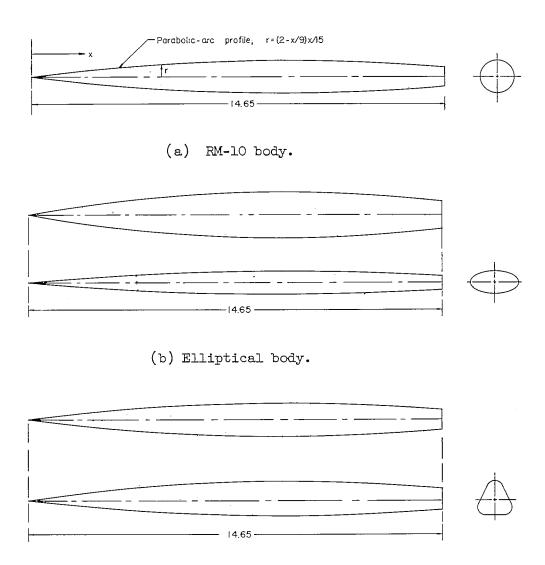

α,	Station				Radial	angle,	θ, deg				
deg	x/L	0	10	20	45	90	180	190	200	225	270
0.1	0.137 .546 .819	.0439 0114 0178	.0403 0219	.0371 0066 0227	.0311 0084 0199	.0268 0109 0221	.0411 0111 0234	0234 0234	•0373 ••0135 ••0246	.0296 0107 0255	.0276 0079 0216
2.6	•137 •546 •819	•0613 -•0024 -•0171	•0525 -•0210	.0463 0006 0219	•0351 -•0088 -•0240	.0279 0139 0270	.0259 0096 0210	.0257 0077 0212	.0279 0120 0238	.0253 0139 0272	.0268 0126 0266
4.3	•137 •546 •819	.0840 .0049 0206	.0688 0251	.0576 .0015 0274	•0371 ••0092 ••0291	.0270 0131 0324	.0171 0135 0212	.0180 0128 0214	.0197 0182 0242	.0210 0212 0315	.02l ₁ 2 01 <i>69</i> 030 <i>9</i>
6.3	•137 •546 •819	.1116 .0129 0212	•0829 -•0268	.0634 .0039 0309	.0351 0118 0360	.0204 0216 0433	.0045 0195 0238	.0054 0197 0249	•0056 -•0259 -•0272	-•01102 -•03011	.0148 0296 0422
8.2	•137 •546 •819	•1324 •0306 ••0101	.1005 0191	.0756 .0111 0296	.0371 011 ₄ 8 0420	•0189 ••0311 ••0506	.0045 0174 0281	.0047 0186 0283	•0028 -•0234 -•0300	.0060 0300 0420	•0080 -•03770 -•0506

TABLE IV.- PRESSURE COEFFICIENT DATA FOR ELLIPTICAL BODY. MAJOR AXIS HORIZONTAL

α,	Station		Radial angle, θ, deg									
deg	x/L	0	315	290	280	270	90	100	110	135	180	
0.1	0.137 .546 .819	.0244 0092 0210	.0294 0088 0210	.0377 0032 0219	.0394 0206	.0447 0069 0171	.0396 0084 0223	.0356 0062 0238	.0377 0088 0246	.0317 0111 0244	.0294 0088 0234	
2.6	•137 •546 •819	.0450 0041 0270	.0506 0077 0279	.0529 0017 0334	•0519 0358	.0409 0184 0210	.0261 0208 0304	.0214 01 <i>69</i> 0266	.0208 0133 0246	.0141 0124 0227	.0133 0114 0214	
4.3	•137 •546 •819	.0630 .0146 0223	.0683 .0051 0259	.0602 0017 0426	.0533 0564	.0225 0304 0354	.0073 0371 0392	.0034 0287 0362	.0101 0219 0369	.0062 0169 0255	.0064 0159 0223	
6.3	.137 .546 .819	.0877 .0251 0096	.0895 .0195 0135	.0731 .0006 0467	•0553 -•0778	.0004 0692 0456	0221 0784 0499	0330 0467 0504	0118 04 05 058 7	0092 0304 0328	0069 0219 0240	
8.2	.137 .546 .819	.1112 .0476 .0047	.1099 .0399 0039	.0904 .0090 0409	.0611 0786	0197 0662 0495	0418 0806 0579	0651 0613 0587	0302 0645 0600	0249 0452 0581	0096 0251 0437	

(c) Triangular body.

Figure 1.- General arrangement of bodies tested. All dimensions in inches.

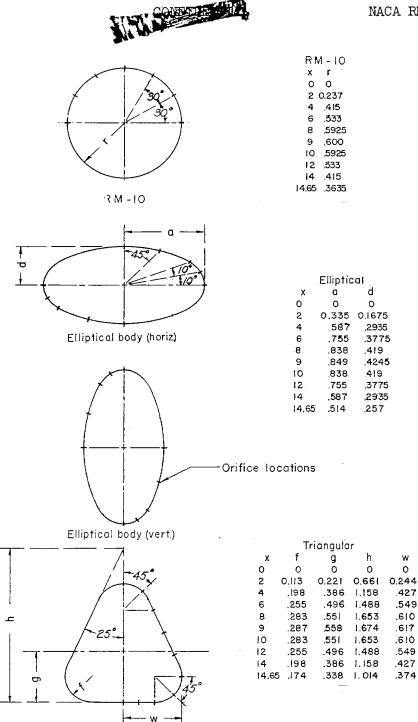
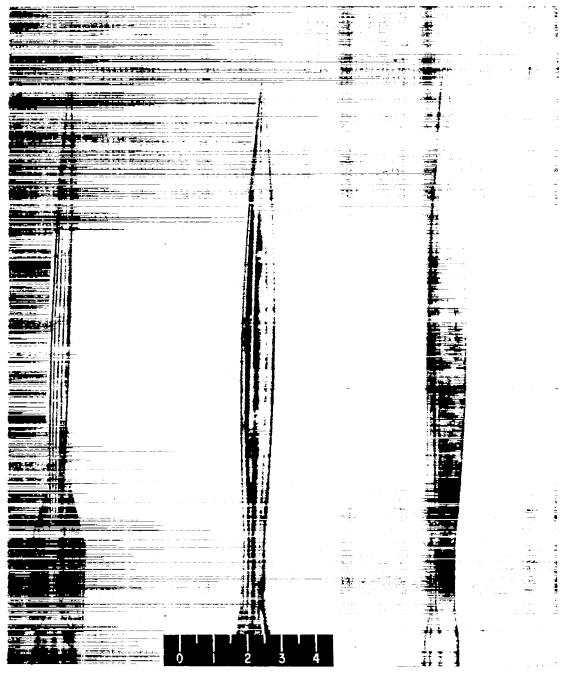


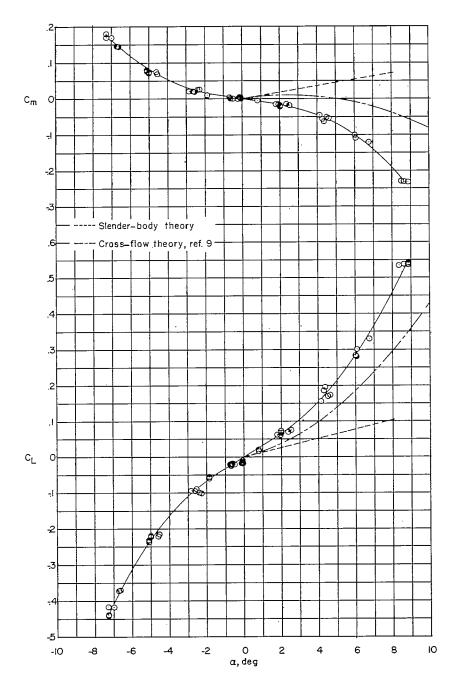
Figure 2.- Cross-section dimensions of bodies tested. All dimensions in inches.

Triangular body


(a) Plan view.

L-88854

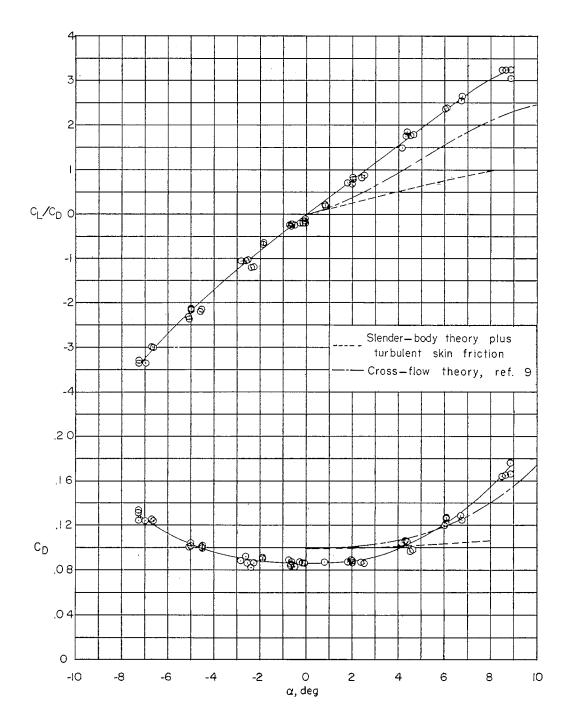
Figure 3.- Photographs of bodies used in pressure-distribution tests showing, from left to right, the elliptical-, circular-, and triangular-cross-section bodies.



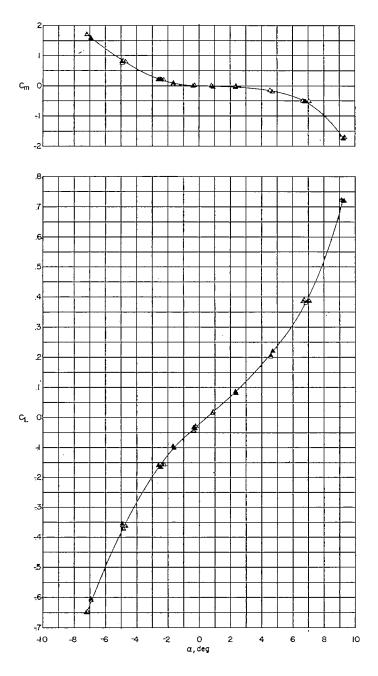
(b) Side view.

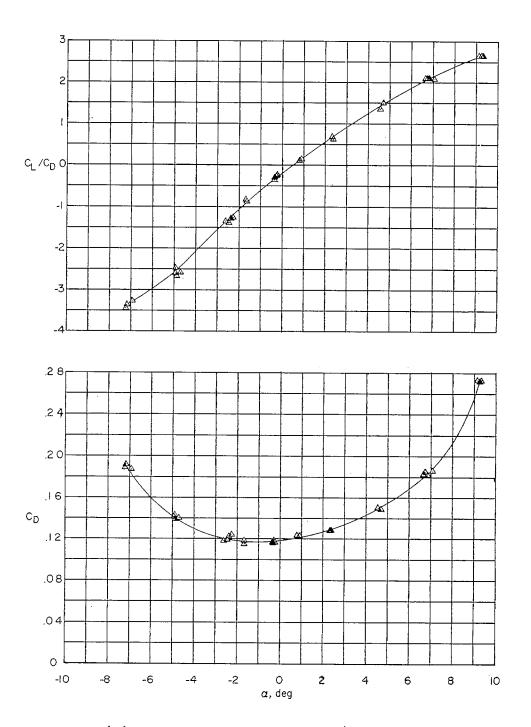
Figure 3.- Concluded.

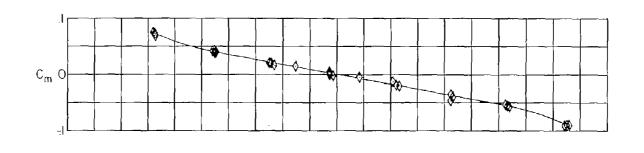
NAME OF THE PERSON OF THE PERS

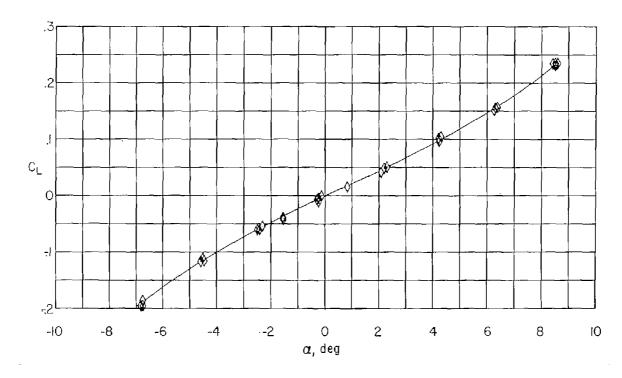

L-88855

(a) Variation of C_{L} and C_{m} with $\alpha.$

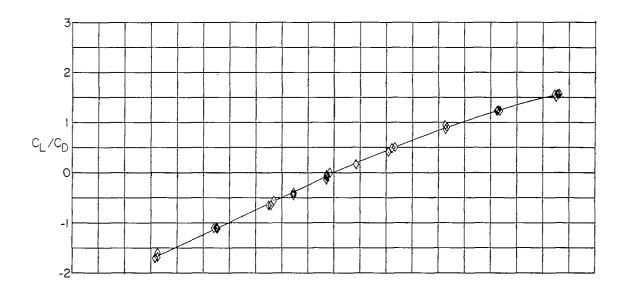

Figure 4.- Force measurements of NACA RM-10 body. M = 3.12; $R = 29 \times 10^6$.

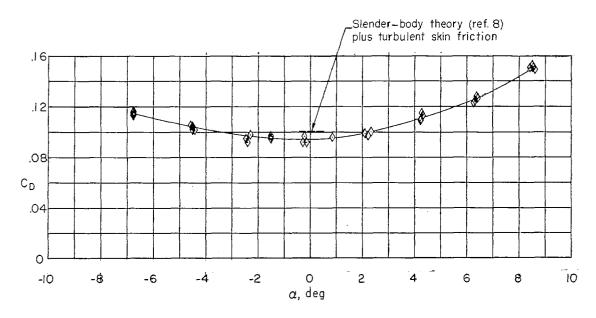

(b) Variation of $\, C_{\rm D} \,$ and $\, C_{\rm L}/\!\!/C_{\rm D} \,$ with $\, \alpha. \,$ Figure 4.- Concluded.


(a) Variation of C_{L} and C_{m} with $\alpha.$


Figure 5.- Force measurements of triangular body. M = 3.12; $R = 33 \times 10^6. \label{eq:R}$

(b) Variation of $\,{}^{\rm C}_{\rm D}\,$ and $\,{}^{\rm C}_{\rm L}/{}^{\rm C}_{\rm D}\,$ with $\,\alpha.$ Figure 5.- Concluded.


N.T. Gministra



(a) Variation of C_L and C_m with α .

Figure 6.- Force measurements of elliptical body with major axis vertical. M = 3.12; R = 29×10^6 .

(b) Variation of $\,{}^{\rm C}_{\rm D}\,$ and $\,{}^{\rm C}_{\rm L}/{}^{\rm C}_{\rm D}\,$ with $\,\alpha.$ Figure 6.- Concluded.

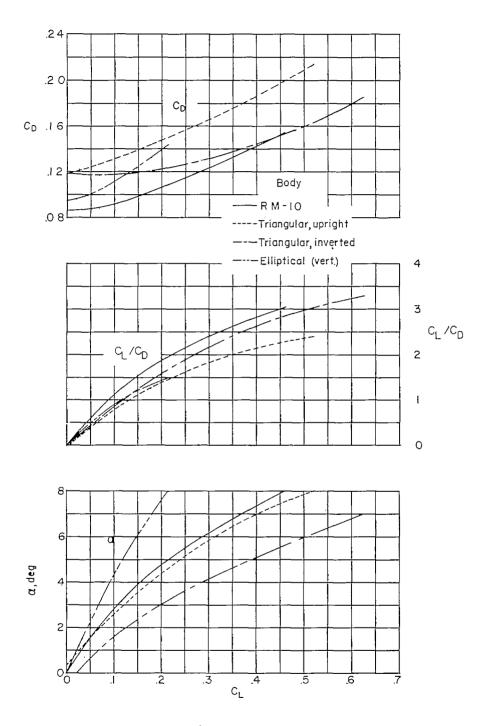


Figure 7.- Variation of α , $C_{\rm L}/C_{\rm D}$, and $C_{\rm D}$ with $C_{\rm L}$ for four body configurations. M=3.12.

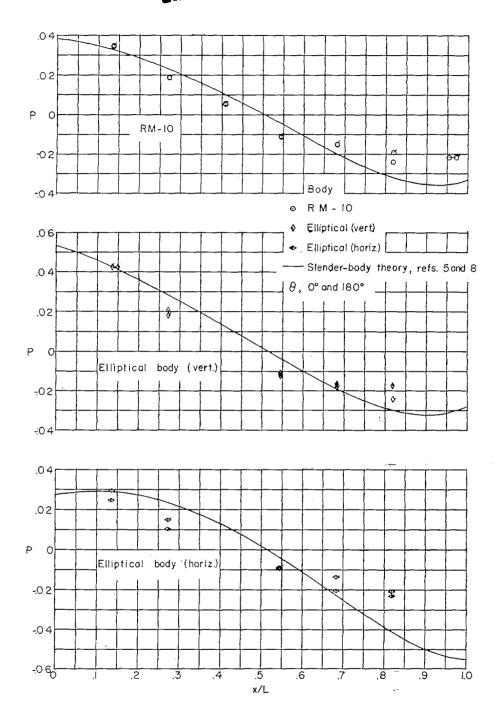
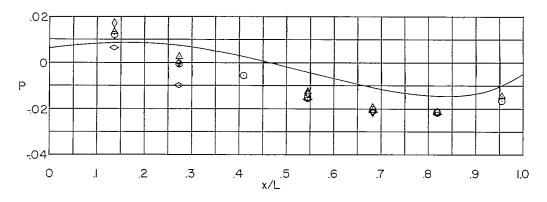
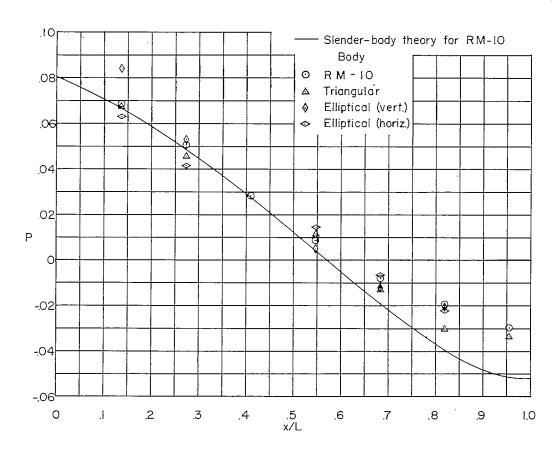
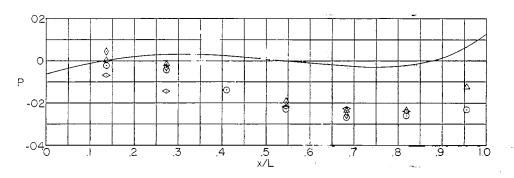




Figure 8.- Variation of pressure coefficient with longitudinal position along body for three body configurations. $\alpha_N = 0^\circ$; flagged symbols denote pressure coefficients at $\theta = 180^\circ$; M = 3.12.


(a) Leeward side; $\theta = 80^{\circ}$.

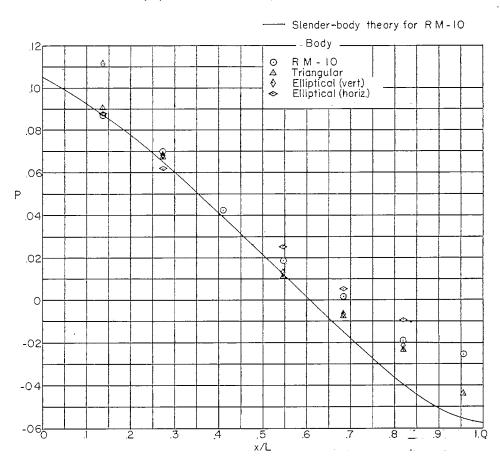
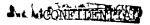
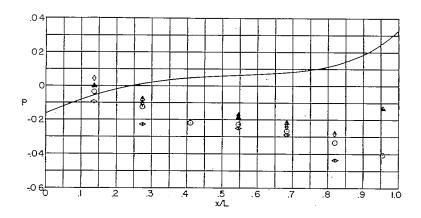

(b) Windward side; $\theta = 0^{\circ}$.

Figure 9.- Variation of pressure coefficient with longitudinal position along body for four body configurations. α_N = 40; M = 3.12.




(a) Leeward side; $\theta = 180^{\circ}$.

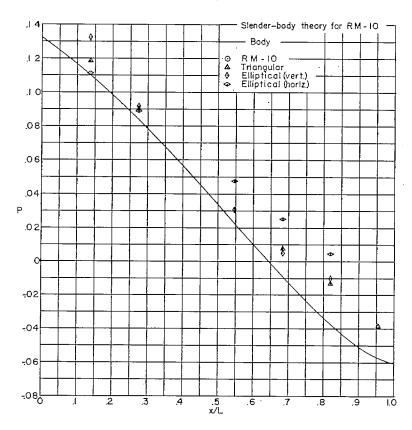
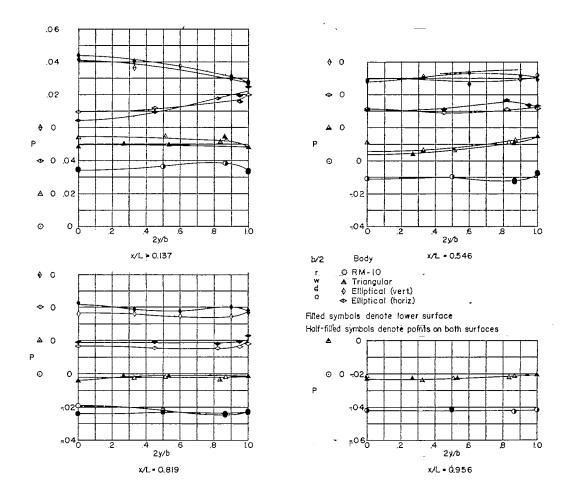
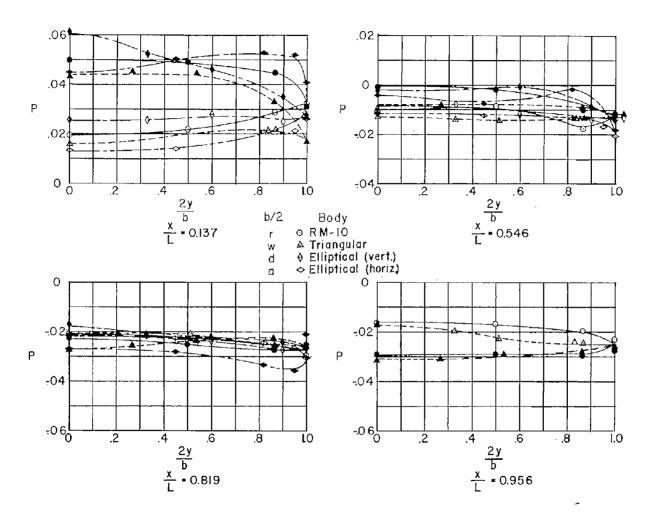

(b) Windward side; $\theta = 0^{\circ}$.

Figure 10.- Variation of pressure coefficient with longitudinal position along body for four body configurations. $\alpha_N = 6^\circ$; M = 3.12.


(a) Leeward side; $\theta = 180^{\circ}$.

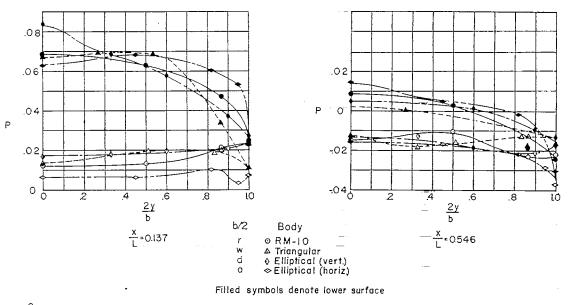
(b) Windward side; $\theta = 0^{\circ}$.

Figure 11.- Variation of pressure coefficient with longitudinal position along body for four body configurations. α_N = 8°; M = 3.12.



(a) $\alpha_{\text{N}} = 0^{\circ}$.

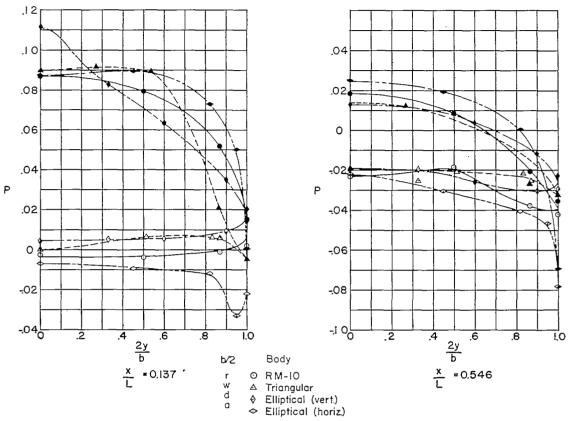
Figure 12.- Variation of pressure coefficient with body width about the plane of symmetry for four longitudinal locations. M = 3.12; $R = 29 \times 10^6$.



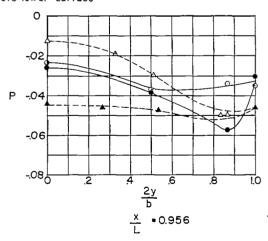

Filled symbols denote lower surface

(b)
$$\alpha_{N} = 2^{\circ}$$
.

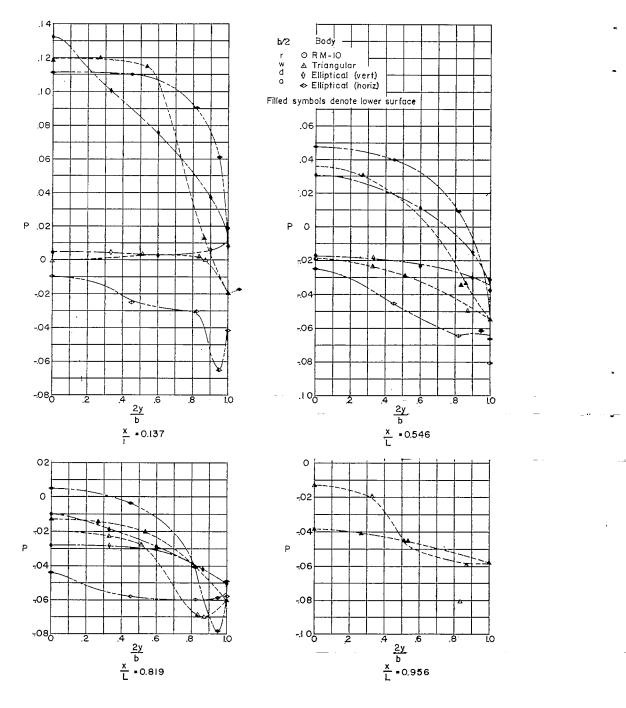
Figure 12.- Continued.



(c)
$$\alpha_{N} = 4^{\circ}$$
.

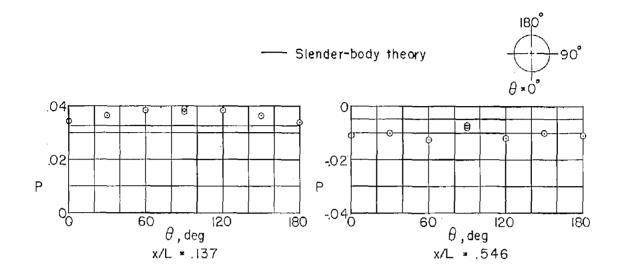

Figure 12.- Continued.

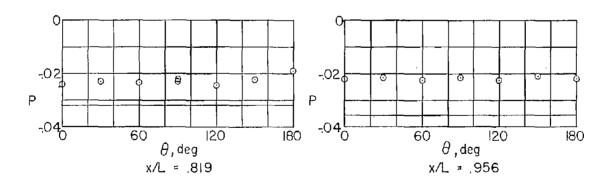
Filled symbols denote lower surface



(d)
$$\alpha_{\text{N}} = 6^{\circ}$$
.

Figure 12. - Continued.

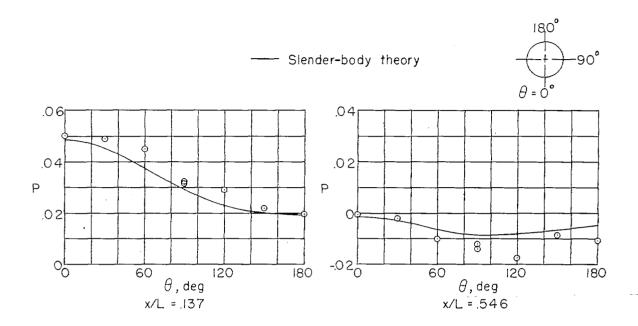


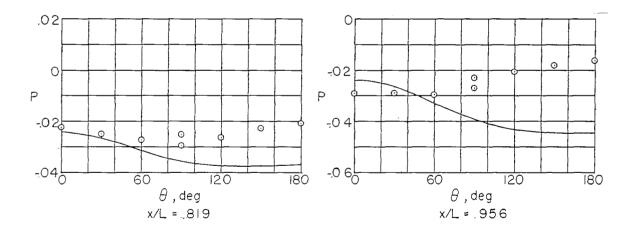


(e)
$$\alpha_{\rm N} = 8^{\rm O}$$
.

Figure 12.- Concluded.

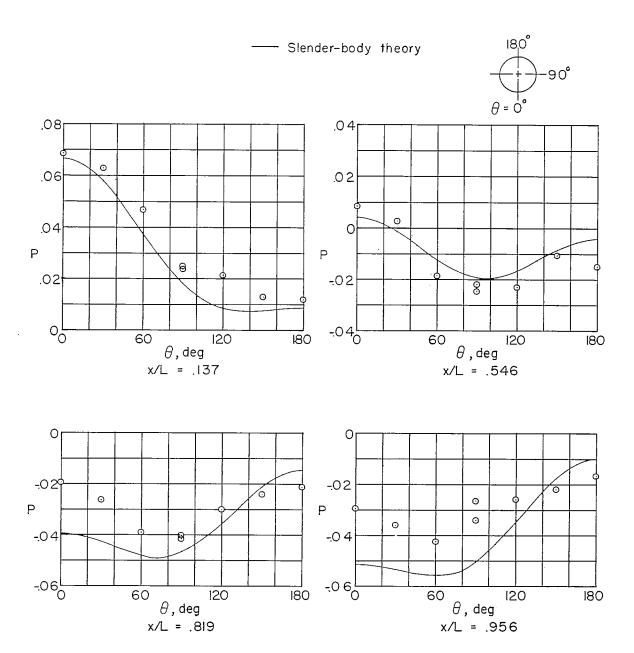
L. CONFEDERALA





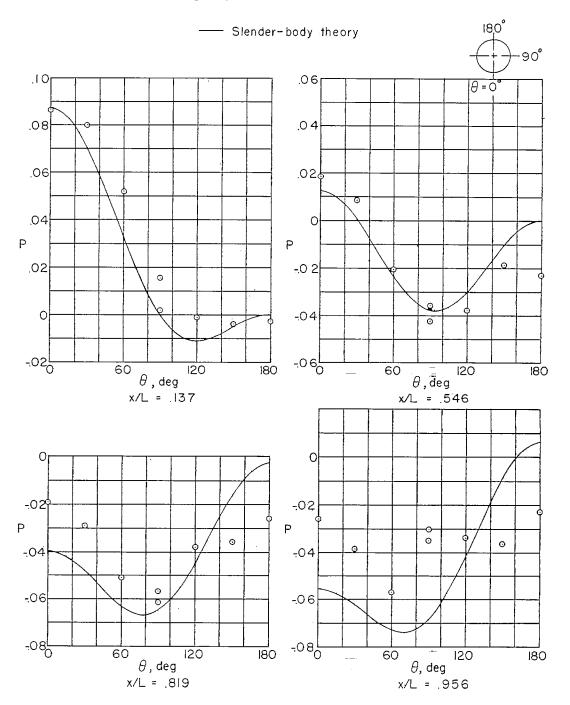
(a) $\alpha_{\overline{N}} = 0^{\circ}$.

Figure 13.- Variation of pressure coefficient with radial position for four longitudinal locations on the NACA RM-10 body. M=3.12.

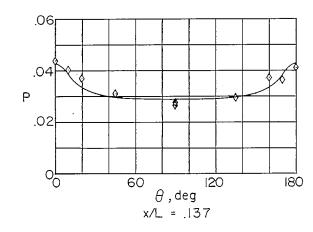


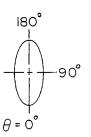
(b)
$$\alpha_{N} = 2^{\circ}$$
.

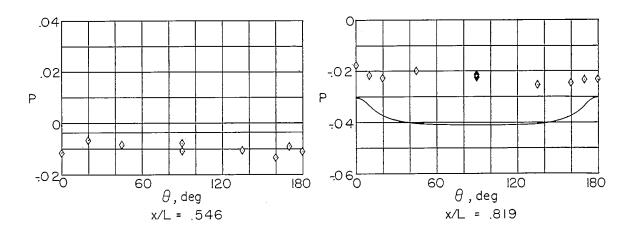
Figure 13.- Continued.


I. Technique of

(c)
$$\alpha_{N} = 4^{\circ}$$
.

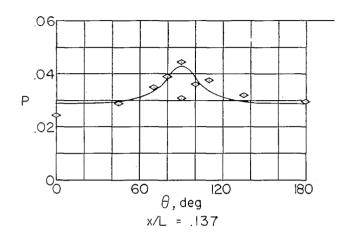

Figure 13.- Continued.

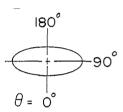

(a)
$$\alpha_N = 6^\circ$$
.

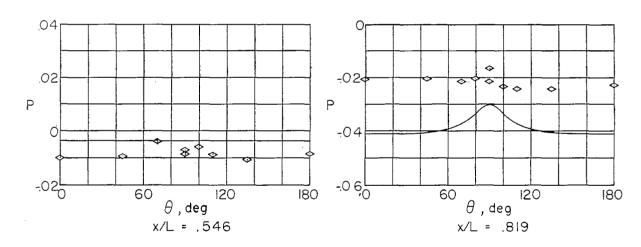

Figure 13.- Concluded.

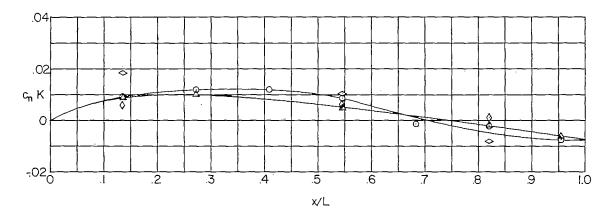
1. Vom

--- Slender-body theory, ref. 8




(a) Elliptical body (major axis vertical).


Figure 14.- Variation of pressure coefficient with radial position for three longitudinal locations on the elliptical body. $\alpha_{\rm N}=0^{\rm O}$; M = 3.12.


Slender-body theory, ref. 8

(b) Elliptical body (major axis horizontal).

Figure 14.- Concluded.

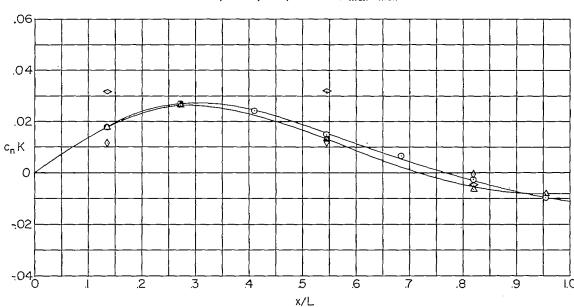
(a)
$$\alpha_{N} = 2^{\circ}$$
.

Body

Κ

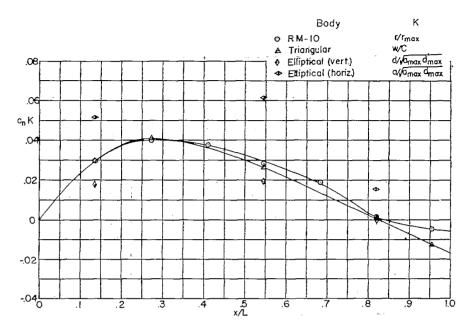
0 RM-10

r/rmax

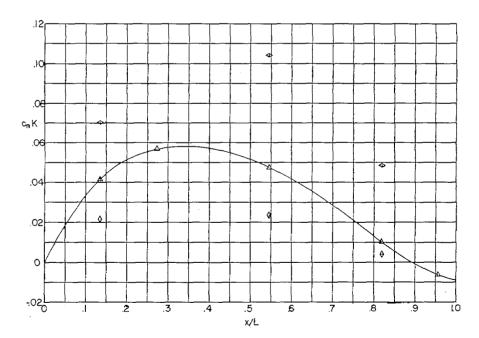

△ Triangular

w/C

♦ Elliptical (vert.)


⇒ Elliptical (horiz.)

 $\frac{d\sqrt{a_{max}d_{max}}}{d\sqrt{a_{max}d_{max}}}$



(b)
$$\alpha_{N} = 4^{\circ}$$
.

Figure 15.- Variation of section loading parameter with longitudinal location for four body configurations. M = 3.12.

(c)
$$\alpha_{N} = 6^{\circ}$$
.

(d)
$$\alpha_{\rm N} = 8^{\circ}$$
.

Figure 15. - Concluded.

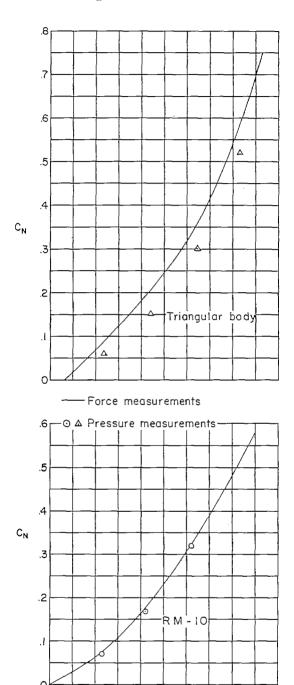
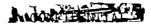



Figure 16.- Comparison of normal-force coefficients obtained from force measurements and from pressure measurements. M = 3.12.

a, deg

